
COP 3223: C Programming (Structures – Part 2) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Structures In C – Part 2

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Structures – Part 2) Page 2 © Dr. Mark J. Llewellyn

Nested Structures In C

• Nesting one kind of structure inside another structure is a useful

technique in many situations. Often hierarchies of structures

are developed to more accurately reflect the real-world situation

that is being modeled or represented by the application

program.

• Consider the following two structure definitions:

struct personName {

char firstName[MAXLENGTH];

char middleName[MAXLENGTH];

char lastName[MAXLENGTH];

};

struct ucfStudent {

struct personName studentName;

double gpa;

int creditHours;

}student1;

COP 3223: C Programming (Structures – Part 2) Page 3 © Dr. Mark J. Llewellyn

This version of the program uses

normal structure variables with no

pointers to the structure. Thus all

referencing of the members is

done with the dot operator.

COP 3223: C Programming (Structures – Part 2) Page 4 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 2) Page 5 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 2) Page 6 © Dr. Mark J. Llewellyn

Nested Structures In C

• Nesting one kind of structure inside another structure is a useful

technique in many situations. Often hierarchies of structures

are developed to more accurately reflect the real-world situation

that is being modeled or represented by the application

program.

• Consider the following two structure definitions:

struct personName {

char firstName[MAXLENGTH];

char middleName[MAXLENGTH];

char lastName[MAXLENGTH];

};

struct ucfStudent {

struct personName studentName;

double gpa;

int creditHours;

}student1, *ptrToStudent;

COP 3223: C Programming (Structures – Part 2) Page 7 © Dr. Mark J. Llewellyn

Nested Structures In C

• To access the members of a nested structure requires two

applications of the dot operator (or the pointer structure

operator if dealing with a pointer to a structure.

• To access the last name of student1 would require the

following expression:

student1.studentName.lastName

• If we have made the assignment:

ptrToStudent = &student1

then to access the last name of the student referenced by the

pointer ptrToStudent would require the following

expression:

ptrToStudent->studentName.lastName

COP 3223: C Programming (Structures – Part 2) Page 8 © Dr. Mark J. Llewellyn

This version of the program uses both

normal structure variables
(student1, student2, and

student3) and a pointer to the

structure (ptrToStudent).

Referencing of the members is done

with a mix of the dot operator and the

structure pointer operator.

COP 3223: C Programming (Structures – Part 2) Page 9 © Dr. Mark J. Llewellyn

Note mix of

referencing

operators

COP 3223: C Programming (Structures – Part 2) Page 10 © Dr. Mark J. Llewellyn

Note mix of

referencing

operators

COP 3223: C Programming (Structures – Part 2) Page 11 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 2) Page 12 © Dr. Mark J. Llewellyn

Nested Structures In C

• In addition to more realistic modeling capabilities provided by

nesting structures, another reason to nest structures is to treat

some data as units of data to simplify parameter passing to

functions.

• For example, if we wanted to represent a student’s name as

consisting of a first, middle, and last name and we did not have the

person name structure, we would have needed to include 2
additional members in the ucfStudent structure. Thus, it

would resemble the following:

struct ucfStudent {

char firstName[MAXLENGTH];

char middleName[MAXLENGTH];

char lastName[MAXLENGTH];

double gpa;

int creditHours;

}student1;

COP 3223: C Programming (Structures – Part 2) Page 13 © Dr. Mark J. Llewellyn

Nested Structures In C

• If we wanted to construct a function that just printed the name

members for a given student, the function would require three

parameters.

The function prototype might look like:

void printName(struct ucfStudent.fName[MAX],

struct ucfStudent.mName[MAX],

struct ucfStudent.lName[MAX]);

The function call might look like:

printName(student1.firstName,

student1.middleName,

student1.lastName);

COP 3223: C Programming (Structures – Part 2) Page 14 © Dr. Mark J. Llewellyn

Nested Structures In C

• Whereas, with our nested structure definition, the function

would require just a single parameter and might look like the

following:

The function prototype might look like:

void printName(struct personName name);

The function call might look like:

printName(student1.studentName);

• The small sample program on the next page illustrates this

technique.

COP 3223: C Programming (Structures – Part 2) Page 15 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 2) Page 16 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 2) Page 17 © Dr. Mark J. Llewellyn

Arrays Of Structures

• An extremely common and useful technique is to construct

arrays of structures. That is to say, the elements of the array are

structures rather than primitive data types like integers or

characters.

• Arrays of structures can be used to simulate a simple database.

• For example, if we wanted to construct a database containing

information about students at UCF using our ucfStudent

structure we could simply use an array containing 50,000 of

these structures such as:

struct ucfStudent studentDB[50000];

• Let’s build such a structure, but let’s assume there are only 10

students instead of 50000+!

COP 3223: C Programming (Structures – Part 2) Page 18 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 2) Page 19 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 2) Page 20 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Structures – Part 2) Page 21 © Dr. Mark J. Llewellyn

Practice Problems

1. Rewrite the program on page 3 so that only

pointers to structures, including the nested

structure, are used to access the members of the

structure.

2. Rewrite the student database program that

begins on page 14 so that the data to be entered

into the array (i.e., the database) is read from a

file rather than via the initializers.

